本文作者:心灵探险家

“智能化”下半场换挡提速 AI成汽车差异化竞争重要工具

“智能化”下半场换挡提速 AI成汽车差异化竞争重要工具摘要: 直播吧月日讯前巴萨中场保利尼奥来到现场观看巴萨对阵年轻人的欧冠比赛在接受采访时他谈到了对巴萨的感情保利尼奥表示我在巴塞罗那踢了年但感觉就像年一样本报记者尹丽梅张硕合肥报道今年以来驱...

直播吧10月2日讯前巴萨中场保利尼奥来到现场观看巴萨对阵年轻人的欧冠比赛,在接受MovistarFutbol采访时,他谈到了对巴萨的感情。保利尼奥表示:“我在巴塞罗那踢了1年,但感觉就像10年一样。

本报记者 尹丽梅 张硕 合肥报道

今年以来,“AI驱动”“端到端”“大模型”成为汽车智能化的高频词汇。在智能驾驶与智能座舱这两大高地上,主机厂、供应商等角色各显神通,围绕AI大模型展开激烈角逐,汽车智能化已经进入深度变革期。

“从明年开始,中国头部主机厂会加大自动驾驶的投放力度,特别是会加大对100 eTOPS高算力的布局,高速领航NOA、城市记忆行车和自动泊车这三大功能将成为10万~15万元车型的标配,明年会迎来爆发式的增长。”9月29日,在全球智能汽车产业大会高层论坛上,博世智能驾驶与控制系统事业部中国区总裁吴永桥表示,如果说汽车产业上半场卷的是电气化与混合动力,那么下半场卷的就是智能化。“从明年上半年开始,如果哪个企业跟不上中阶自动驾驶发展的脚步,旗下车型没有高速领航、城市记忆行车和自动泊车这些配置,它们可能很难进入新一轮内卷和淘汰赛。”

《中国经营报》记者在采访中了解到,大模型上车为智能驾驶带来了颇多想象空间。欧冶半导体首席执行官、联合创始人高峰认为,到2030年,L4级以上自动驾驶有可能在封闭场景以及特定的商业、物流等领域实现商用。而从现在到2030年的近五年时间里,L2级和L2+级智能驾驶将迎来大规模普及。

AI成为新战略支点

在新能源汽车的赛场上,电动化被称为“上半场”,智能化被称为“下半场”。在人工智能时代,汽车产业加速进入以智能化为核心竞争力的新阶段,AI化正在成为汽车产业发展的新战略支点。

奇瑞汽车股份有限公司副总经理王琅认为,随着汽车从交通工具升级为新一代移动智能终端,AI不仅重新定义了汽车,也重新塑造了汽车的管理模式和经营边界。

“AI是时代的新动力,是汽车产品实现 性和差异性的重要工具。每个时代都有自己的主要矛盾,也有自己时代的新动能,就像20年前奇瑞坚定地选择自主研发发动机一样,AI一定是奇瑞下一个20年或者40年必须抓住的重大机遇。”王琅说道。

在王琅看来,汽车产业已经进入 电动化、智能化时代,汽车机械工程的复杂度已经大幅降低,芯片、软件等复杂技术和要求大幅度提高,智舱、智驾、整车电子架构、智能架构让汽车越来越像一个可以自我进化的智能体,需要AI大模型的 融入。通过AI的赋能,可以实现千车千面,实现智能化体验的差异化、独特性甚至是 性,让产品拥有核心竞争力。

行业内对此已经形成共识。科大国创副总裁、科大国创新能科技有限公司总经理曾勇光认为,汽车生态系统发生了前所未有的变革,正在由硬件主导向软件主导转型,带来了新功能、新体验、新感觉。随着智能化不断深入,软件定义汽车将是必然趋势。在此趋势下,决定未来汽车的是以AI为核心的软件技术,而不再是传统的机械性能与硬件配置。

智能驾驶与智能座舱是汽车智能化最重要的两个部分。在智能驾驶中,AI通过感知、决策和自我学习,使车辆能够更加自主地应对复杂的道路环境;在智能座舱中,AI则通过个性化服务、自然语言交互和情感识别,极大提升了用户的驾驶和乘坐体验。大模型是推动AI快速发展的关键技术之一。

据Momenta CEO曹旭东介绍,Momenta智驾大模型在应对复杂路口或动态横穿场景时,能做到从容应对,可显著提升驾驶安全和通行效率。即使在夜间极窄车位,断头路车位等极限场景,它也可实现精准泊车。

AI为智能座舱带来了更准确、流畅的语音识别与交互能力。吴永桥表示:“在座舱方面,未来的方向是打造AI座舱,现在的座舱只是基于Ch GPT来提高自然语义交互能力,博世正在与几个头部主机厂研究如何在座舱上部署单侧大模型,使其算力超过自动驾驶300 TOPS,这样能让智能座舱的运营更加 流畅、智能。”

在 智舱业务部总经理李涛看来,未来汽车行业需要的是能够了解用户所想所需,并且能自动生成全局化执行方案的新时代座舱,这是智能座舱演进的终极方向。

面临算力压力

随着自动驾驶、智能座舱、车联网等技术的发展,汽车需要处理大量的感知数据、决策和控制任务,因此对算力的要求急剧增加。

科大讯飞智能汽车事业部智能座舱业务部总经理吕思南指出,随着大模型包括很多AI技术在汽车上落地,汽车智能化服务越来越多地要求更高的算力,我们面临较高的算力压力。

“在人工智能时代,汽车企业缺的不是产能,多几个整车厂,少几个整车厂,好像不是产业发展的主要矛盾。汽车行业最缺的是智算的基础设施,智算基础设施不足将会成为智能网联汽车加速发展的主要矛盾。”中国电动汽车百人会副理事长兼秘书长张永伟指出,目前国内汽车智能算力存在结构性短缺的问题,软件生态完善的“成熟”算力缺口较大。

据了解,要完成端到端智能驾驶的研发和训练,智能算力的需求至少要达到1 EFLOPS,目前车企的平均算力是3 EFLOPS,理想算力是100 EFLOPS。

“智能化”下半场换挡提速 AI成汽车差异化竞争重要工具

根据公开数据,累积到2024年年底,三大运营商规划的算力资源总量是53 EFLOPS,然而就一个端到端大模型而言,一个企业需要的算力就达到100 EFLOPS。

“现阶段,如何 智能驾驶、人工智能对算力的需求是当务之急。我们要做到既要保障有算力可用,又要追求可用的算力成本较低,甚至还要去 本土算力由不成熟走向成熟化发展的问题。”张永伟认为,要加快 国内算力不成熟的问题,通过丰富软件和生态,打造成熟的算力,减少算力在硬件上未来被“卡脖子”的问题。我们要在算力方面投入巨资,而且要持续投入,围绕数据、算力、算法形成规模化效应。同时,要致力于建设汽车智算基础设施,加强算力共建共享。

算力是智能化的关键基础。李涛认为,要 算力不足的问题,还可以另辟蹊径,在产品设计中避免算力浪费的问题。

“今天很多座舱设计是把Pad安到了车上,然后把移动App直接迁移到车机上去。现在行业里统计,单台车上搭载App最多的有189个。可以想象一下,在驾驶过程中从189个App里翻你想要的应用是多么困难,这不仅会占用宝贵的车机算力及内存资源,更会加重用户在驾驶体验过程中的心智和认知负担,甚至可能会造成事故。”李涛说道。

AI大模型时代的到来是整车智能化的催化剂。博泰车联网云端研发中心总经理熊正桥认为,汽车智能化依赖的是算力、数据以及产业链的协同,如何打破各方技术壁垒,实现共享也是一大新挑战。

(编辑:张硕 审核:童海华 校对:翟军)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

阅读
分享